Announcements

1) Quiz Thursday

Back to the Heat Equation

Two -Dimensional:

$$
u=u(x, y, t) \text { the }
$$

temperature in a $2-D$ region

$$
k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=\frac{\partial u}{\partial t}
$$

is the heat equation, where again, k is the thermal conductivity of the material.

Time Independence

We assume that the value $u(x, y, t)$ does not depend on $t \Rightarrow \frac{\partial u}{\partial t}=0$

The time independent heat equation is

$$
k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0
$$

Circular Domains

We measure the heat flow on a disk of radius R, so the region is

$$
D=\{(r, \theta) \mid 0 \leq r \leq R, 0 \leq \theta<2 T)\}
$$

Boundary conditions on u of the form

$$
u(R, \theta)=f(\Theta)
$$

(boundary circle of radius R)

Switch to Polar Coordinates

Recall we have

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\arctan \left(\frac{y}{x}\right)
\end{aligned}
$$

Can then write

$$
u=u(r, \theta) \text { (t suppressed }
$$

since u is time-independent).
Rewrite the heat equation in polar coordinates!

We want $\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}$ in terms of r and θ. Use the Chain Rule!

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x} \\
& =\frac{\partial u}{\partial r} \frac{\partial}{\partial x}\left(\left(x^{2}+y^{2}\right)^{1 / 2}\right)+ \\
& \frac{\partial u}{\partial \theta} \frac{\partial}{\partial x}\left(\arctan \left(\frac{y}{x}\right)\right) \\
& =\frac{\partial u}{\partial r} \frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{\partial u}{\partial \theta}\left(-\frac{y}{x^{2}}\right) \frac{1}{1+\left(\frac{y}{x}\right)^{2}} \\
& =\frac{\partial u}{\partial r} \frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{\partial u}{\partial \theta}\left(\frac{-y}{x^{2}+y^{2}}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial u}{\partial y} & =\frac{\partial u}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial y} \\
& =\frac{\partial u}{\partial r} \frac{\partial}{\partial y}\left(\left(x^{2}+y^{2}\right)^{1 / 2}\right)+ \\
& \frac{\partial u}{\partial \theta} \frac{\partial}{\partial y}\left(\arctan \left(\frac{y}{x}\right)\right) \\
& =\frac{\partial u}{\partial r} \frac{y}{\sqrt{x^{2}+y^{2}}}+\frac{\partial u}{\partial \theta}\left(\frac{1}{x}\right)\left(\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\right) \\
& =\frac{\partial u}{\partial r} \frac{y}{\sqrt{x^{2}+y^{2}}}+\frac{\partial u}{\partial \theta} \frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Extra Credit (10 points, due Tuesday after exam)

Show that, in polar coordinates, the heat equation

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \text { becomes } \\
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
\end{gathered}
$$

by using the chain rule to Compute $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$

Example 1: Attempt to solve the heat equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

on the unit disk

$$
D=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta<2 \pi\}
$$

with $u(1, \theta)=1$.

Suppose

$$
u(r, \theta)=f(r) g(\theta)
$$

for some real-valued functions f and g

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=f^{\prime}(r) g(\theta), \\
& \frac{\partial^{2} U}{\partial r^{2}}=f^{\prime \prime}(r) g(\theta) \\
& \frac{\partial^{2} u}{\partial \theta^{2}}=f(r) g^{\prime \prime}(\theta)
\end{aligned}
$$

Plug into heat equation:

$$
\begin{gathered}
f^{\prime \prime}(r) g(\theta)+\frac{1}{r} f^{\prime}(r) g(\theta)+\frac{1}{r^{2}} f(r) g^{\prime \prime}(\theta) \\
=0
\end{gathered}
$$

Multiply through by r^{2}

$$
r^{2} f^{\prime \prime}(r) g(\theta)+r f^{\prime}(r) g(\theta)+f(r) g^{\prime \prime}(\theta)=0,
$$

so

$$
\begin{gathered}
r^{2} f^{\prime \prime}(r) g(\theta)+r f^{\prime}(r) g(\theta) \\
=-f(r) g^{\prime \prime}(\theta)
\end{gathered}
$$

Dividing by $f(r) g(\theta)$, we get

$$
\frac{r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)}{f(r)}=\frac{-g^{\prime \prime}(\theta)}{g(\theta)}
$$

This means there must be a constant α such that

$$
\frac{r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)}{f(r)}=\alpha=\frac{-g^{\prime \prime}(\theta)}{g(\theta)}
$$

We get two differential equations

$$
\begin{gathered}
r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\alpha f(r)=0 \\
g^{\prime \prime}(\theta)+\alpha g(\theta)=0
\end{gathered}
$$

$2^{\text {rd }}$ equation: Second order, constant coefficients, homogeneous, so one solution is

$$
g(\theta)=e^{a \theta}
$$

$1^{\text {st }}$ Equation: $2^{\text {nd }}$ order, homogeneous, nonconstant coefficients - it is a Cauchy-Euler equation!

One solution given by

$$
f(r)=r^{s}
$$

Solve:

$$
\begin{gathered}
r^{2}(s)(s-1) r^{s-2}+r(s) r^{s-1} \\
+\alpha r^{s}=0, \text { so } \\
r^{s}\left(s^{2}-s+s+\alpha\right)=0
\end{gathered}
$$

We have

$$
\begin{gathered}
S^{2}+\alpha=0, \\
S= \pm \sqrt{-\alpha} \quad(\text { more difficult } \\
\\
\text { if } \alpha>0) \\
\alpha<0, \quad r, \quad r \text { are }
\end{gathered}
$$

two linearly independent solutions, so

$$
f(r)=C_{1} r^{\sqrt{-\alpha}}+C_{2} r^{-\sqrt{-\alpha}}
$$

More on Electrical Circuits
(Section 5.7)
Ma Culpa on Capacitors
In a simple RC circuit,

$$
E(t)=E_{c}+E_{R}
$$

where $E_{R}=R I, E_{c}=\frac{q}{c}$.
q is nonconstant!

$$
\frac{d q}{d t}=I(t) \text {, so }
$$

we way rewrite

$$
R \frac{d q}{d t}+\frac{q}{c}=E(t)
$$

